

Software Integrated Solutions

S
c
h

lu
m

b
e

rg
e
r P

u
b

lic

Interpreting

ProSource Seabed
Diagrams

Copyright Notice
Copyright © 2016 Schlumberger. All rights reserved.

No part of this document may be reproduced, stored in an information retrieval system, or
translated or retransmitted in any form or by any means, electronic or mechanical, including
photocopying and recording, without the prior written permission of the copyright owner.

Trademarks
Schlumberger trademarks that may appear in this document include, but are not limited to
ProSource and Seabed.

All other company or product names mentioned are used for identification purposes only and
may be trademarks of their respective owners.

Table of Contents

Interpreting ProSource Seabed Diagrams .. 1

1.1 Document Purpose ... 1

1.2 What is a Seabed Diagram? .. 1

Example Diagram .. 2

1.3 Seabed Diagramming Notation ... 3

1.4 Abstract Class .. 6

1.5 Concrete Class ... 6

1.6 Attribute .. 7

1.7 Attribute Value Domain .. 7

1.8 Association .. 8

1.9 Association Multiplicity ... 9

1.10 Association Delete Semantic .. 11

1.11 Composition Association .. 13

1.12 Generalization ... 14

Appendix A – Association Implementation Techniques Mentioned in the Web Report 15

Appendix B – Associations Referencing Abstract Classes ... 16

Example B-1 .. 17

B.1 Single Abstract .. 18

B.1.1 Physical Implementation .. 18

B.1.1.1 Referential Integrity .. 18

B.1.1.2 Multiplicity .. 18

B.1.1.3 Web Report Representation ... 18

B.1.1.4 Data Example .. 19

B.1.2 Assoc ... 19

B.1.1.5 Physical Implementation .. 19

B.1.1.6 Referential Integrity .. 20

B.1.1.7 Multiplicity .. 21

B.1.1.8 Web Report Representation ... 21

B.1.1.9 Data Example .. 21

 Interpreting ProSource Seabed Diagrams

1

Copyright © 2016 Schlumberger. All rights reserved.

Interpreting ProSource Seabed Diagrams

1.1 Document Purpose

The purpose of this document is to explain the various notations used in ProSource Seabed
diagrams (hereafter referred to simply as “Seabed diagrams”): what they mean, how they
translate to the web report, and their implications on the physical database.

1.2 What is a Seabed Diagram?

A Seabed diagram is a class diagram expressed in the Unified Modeling Language1 (UML) that
represents Seabed data elements and the relationships between them. Although the diagrams
are meant to be a logical representation of business and data rules, many aspects of the
physical database design can be inferred from them. The following example diagram describes
the concept of facility composition. This diagram is referenced as an example throughout this
document when describing diagramming notations. It may or may not represent an actual part
of the current commercial Seabed logical data model.

1 The Unified Modeling Language Reference Manual by James Rumbaugh, Ivar Jacobson, Grady Booch; 1999; Addison-Wesley

 Interpreting ProSource Seabed Diagrams

2

Copyright © 2016 Schlumberger. All rights reserved.

Example Diagram

0..*0..1
Part_Facility

0..*1..1
Whole_Facility

0..*

0..1
Part_Facility_Role

ESP

Initial_Start_Count

ESP_Component

{abstract}

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Length

Rated_SHP

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Trim_Type

Weight
ESP_Pump

Actual_Stage_Count

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Housing_Type
Length

Max_Stage_Count

Min_Stage_Count

Outer_Diameter

Pump_Type

Rated_SHP

Rated_Volume

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Stage_Design

Trim_Type

Weight

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

Facility

{abstract}

Existence_Kind

Facility_Equipment_Flag

Facility_Composition

Linear_Sequence

Measure_Point_Offset

Part_Facility_Count

Part_Facility_Spacing

R_Facility_Role

Assembly

{abstract}
Tracked_Facility

{abstract}

Catalog_Number

Inventory_Id

Manufacture_Date

Manufacturer

Material_Type

Model_Name

Serial_Number

Pump

{abstract}

Hydraulic_Power

Mechanical_Power

Rated_Flow_Rate

Rated_Pressure

0..*

 Interpreting ProSource Seabed Diagrams

3

Copyright © 2016 Schlumberger. All rights reserved.

1.3 Seabed Diagramming Notation

The various diagramming notations used in Seabed diagrams are listed here. Click the hyperlink
for an explanation of its meaning, how it translates to the web report, and its implication on the
physical database design.

Abstract Class

 Facility
{abstract}

Existence_Kind
Facility_Equipment_Flag

Concrete Class

Attribute

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

 Interpreting ProSource Seabed Diagrams

4

Copyright © 2016 Schlumberger. All rights reserved.

Attribute Value Domain

The value domain is not normally displayed in order to improve the readability of the
diagrams.

Association

Association Multiplicity

0..*
0..1

Part_Facility

Facility
{abstract}

Existence_Kind
Facility_Equipment_Flag

Facility_Composition

Linear_Sequence
Measure_Point_Offset
Part_Facility_Count
Part_Facility_Spacing

Association Delete Semantic

The association delete semantic is not normally displayed in order to improve the readability
of the diagrams.

<<Cascade>>
0..* 0..1

Part_Facility

Facility
{abstract}

Existence_Kind
Facility_Equipment_Flag

Facility_Composition

Linear_Sequence
Measure_Point_Offset
Part_Facility_Count
Part_Facility_Spacing

Composition Association

0..*

1..1
Borehole

Borehole Borehole_Alias

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

CODE

CODE

double

CODE

double

double

double

double

double

CODE

0..*0..1
Part_Facility

Facility

{abstract}

Existence_Kind

Facility_Equipment_Flag

Facility_Composition

Linear_Sequence

Measure_Point_Offset

Part_Facility_Count

Part_Facility_Spacing

 Interpreting ProSource Seabed Diagrams

5

Copyright © 2016 Schlumberger. All rights reserved.

Generalization

ESP_Pump

Actual_Stage_Count

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Housing_Type

Length

Max_Stage_Count

Min_Stage_Count

Outer_Diameter

Pump_Type

Rated_SHP

Rated_Volume

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Stage_Design

Trim_Type

Weight

Pump

{abstract}

Hydraulic_Power

Mechanical_Power

Rated_Flow_Rate

Rated_Pressure

 Interpreting ProSource Seabed Diagrams

6

Copyright © 2016 Schlumberger. All rights reserved.

1.4 Abstract Class

What does it tell me? An abstract class is a type of class that represents a generalized
structure or “parent” from which other classes inherit attributes and
associations. An abstract class acts as the supertype in generalization
(“is-a-kind-of”) associations.

How is it represented in the
web report?

 As an Entity with Entity Type = “Abstract”.

How is it represented in a
physical database?

 Facility

{abstract}

Existence_Kind
Facility_Equipment_Flag

 Abstract classes have no direct instances and therefore are not
implemented as tables or views in a physical database. Instead, the
concrete classes that are children of the abstract class inherit the
attributes and associations from the abstract class; and those
attributes/associations become columns in the view created from the
concrete class. This is explained in further detail in the Generalization
section of this document.

1.5 Concrete Class

What does it tell me? A concrete class is not abstract. A concrete class can have direct
instances; therefore it is implemented as a table or view in a physical
database.

How is it represented in the
web report?

 As an Entity with Entity Type = “Table” or “View”.

How is it represented in a
physical database?

 It is defined as a view with the same structure and name as the class.
For most classes, there is also a table whose name is the same as the
class name with an “_” (underscore) appended to the end of the class
name. The Seabed physical database is designed for users to access
and update data only through views, rather than by accessing the
tables directly. Seabed services are only guaranteed to work when
the database access it done through the views.

Note: In cases where a concrete class has a generalization association
to another concrete class, the child class is implemented only as an
updateable view. The parent class is a table with a matching read-
only view. This is explained in further detail in the Generalization
section of this document.

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

 Interpreting ProSource Seabed Diagrams

7

Copyright © 2016 Schlumberger. All rights reserved.

1.6 Attribute

What does it tell me? An attribute is a property of a class.
This example shows that motor
type and outer diameter are among
many attributes of an ESP motor.

How is it represented
in the web report?

It is listed as a column in the
“Columns” section of an Entity.

How is it represented
in a physical database?

It is implemented as a column in a
table or view.

1.7 Attribute Value Domain

What does it tell me? The value domain defines or controls
the nature of the values that can be
inserted into an attribute’s associated
column in a database. It determines
the data type, width, and scale with
which the column should be
implemented.

How is it represented
in the web report?

It is listed as the “value domain” of a
column. The data type, width, and
scale associated with the value domain
are represented as the “type” of a
column.

How is it represented
in a physical database?

The value domain determines the data
type, width, and scale of a column.

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

CODE

CODE

double

CODE

double

double

double

double

double

CODE

 Interpreting ProSource Seabed Diagrams

8

Copyright © 2016 Schlumberger. All rights reserved.

1.8 Association

What does it tell me? An association describes the relationship between two classes. In the
example above, the association shows that a facility composition
“Refers To” a facility, and that a facility may be “referenced by” a
facility composition. The direction of the arrow tells you that
Facility_Composition is the “source class” and Facility is the “target
class.” This example also shows that the association name is
“Part_Facility”.

How is it represented in
the web report?

 Each entity that participates as the target in an association will have
that association listed in its “Referenced By” section, with the source
class specified in the “From Entity” field, and the association name
specified in the “Link” field.

Each entity that participates as the source in an association will have
that association listed in its “Refers To” section, with the target class
specified in the “To Entity” field and the association name specified in
the “Link” field.

In some circumstances, the association is also represented as a
column in the web report. See below.

For associations between two concrete classes, the association name
is listed as a column in the source entity (since it becomes an FK
column in the physical database). If the target class inherits from
“IT_Object” class, “_Id” is appended to the association name. The
target entity is specified as the “Value Domain” of that column.

For associations where the source class is abstract and the target
class is concrete, the association is listed as a column in each entity
inherited from the source class (since it becomes an FK column in the
physical database). The target entity is specified as the “Value
Domain” of each column.

For associations where the target class is abstract, the web report
representation is dependent on the type of technique used to
implement the association. See Appendix B – Associations Referencing
Abstract Classes for a description of the implementation techniques
and how they are represented in the web report.

0..*0..1
Part_Facility

Facility

{abstract}

Existence_Kind

Facility_Equipment_Flag

Facility_Composition

Linear_Sequence

Measure_Point_Offset

Part_Facility_Count

Part_Facility_Spacing

 Interpreting ProSource Seabed Diagrams

9

Copyright © 2016 Schlumberger. All rights reserved.

How is it represented in a
physical database?

 For associations between two concrete classes, the association
becomes a column in the source table with a foreign key constraint in
the target table. The column name corresponds to the name of the
association unless the target class inherits from the “IT_Object” class,
in which case “_Id” is appended to the end of the column name.

For associations where the source class is abstract and the target
class is concrete, the association becomes a column in each table
whose associated class inherits from the source class. Each column
has a foreign key constraint to the target class. The column name
corresponds with the name of the association unless the target class
inherits from the “IT_Object” class, in which case “_Id” is appended to
the end of the column name.

For associations where the target class is abstract, the
implementation is dependent on the type of technique specified to
implement the association. See Appendix B – Associations Referencing
Abstract Classes for a description of the implementation techniques
and how they are physically implemented.

1.9 Association Multiplicity

What does it tell me? The association multiplicity shows how many instances of each class
can be connected across the association. It is written as an expression
that evaluates a range of values, usually with a lower bound and an
upper bound. In the example above, the multiplicity on the target side
can be interpreted as, “Each Facility_Composition instance references
at least 0 and at most 1 Facility instance.” The multiplicity on the
source indicates that, “Each Facility instance can be referenced by
zero or any number of Facility_Composition instances.”

The multiplicity indicates whether or not it is mandatory for one class
to reference another:

1..1 multiplicity on the target means it is mandatory for the source
class to reference the target class, since the source class must
reference “at least 1” instance of the target class.

0..*0..1
Part_Facility

Facility

{abstract}

Existence_Kind

Facility_Equipment_Flag

Facility_Composition

Linear_Sequence

Measure_Point_Offset

Part_Facility_Count

Part_Facility_Spacing

 Interpreting ProSource Seabed Diagrams

10

Copyright © 2016 Schlumberger. All rights reserved.

0..1 multiplicity on the target side means it is not mandatory for the
source class to reference the target class.

How is it represented in
the web report?

 The multiplicity is not shown in the web report. The web report shows
only whether it is mandatory for the source Entity to reference the
target Entity. In this example, the link and column would have a ‘No’
in the “Required” field, since it is not mandatory for a
Facility_Composition instance to reference a Facility instance.

How is it represented in a
physical database?

 For associations between two concrete classes, the association
becomes a foreign key column in the source table. If the association is
mandatory, the foreign key column is implemented with a NOT NULL
constraint.

For associations where the source class is abstract and the target
class is concrete, the association becomes a foreign key column in
each table whose associated class inherits from the source class. If the
association is mandatory, each foreign key column is implemented
with a NOT NULL constraint.

For associations where the target class is abstract, see Appendix B –
Associations Referencing Abstract Classes for details on how
multiplicity for these types of associations is implemented.

 Interpreting ProSource Seabed Diagrams

11

Copyright © 2016 Schlumberger. All rights reserved.

1.10 Association Delete Semantic

<<Cascade>>
0..* 0..1

Part_Facility

Facility
{abstract}

Existence_Kind
Facility_Equipment_Flag

Facility_Composition

Linear_Sequence
Measure_Point_Offset
Part_Facility_Count
Part_Facility_Spacing

What does it tell me? The delete semantic specifies what happens when the instance of the
target class that is referenced by an instance of the source class is
deleted. The example above shows that if the Facility instance that is
referenced by the Facility_Composition instance (record) is deleted,
then the corresponding Facility_Composition instance (record) is also
deleted. In other words, the delete “cascades” to
Facility_Composition. The following are definitions of the various
delete semantics:

Cascade: deleting an instance in the target class results in the deletion
of all instances in the source class that reference it. If the association
in the example above were Cascade, the deletion of a Facility instance
would cause any Facility_Composition instances referring to that
Facility instance to also be deleted.

Cascade!: deleting an instance in the target class results in the
deletion of all instances in the source class that reference it. If the
association in the example above were Cascade!, the deletion of a
Facility instance would cause any Facility_Composition instances
referring to that Facility instance to also be deleted. Cascade! is used
when a the use of a Cascade delete semantic would result in two
different cascade paths from one class to another.

Restrict: an attempt to delete an instance in the target class results in
an error if any source instances exist that reference the target
instance to be deleted. All source instances must be deleted before
the target can be successfully deleted. If the association in the
example above was Restrict, you could not delete a Facility instance if
it had any Facility_Composition instances referring to it.

Nullify: the columns in the source containing the reference to the
target instance are set to null when the target instance is deleted. If
the association in the example above was Nullify, the deletion of a
Facility instance would cause any Facility_Composition.Part_Facility_Id
columns that contained a value referencing that Facility instance to be
nullified.

Control: the inverse of Cascade. Control specifies that the referenced
instance in the target class be deleted when an instance in the source
is deleted. When an attempt is made to delete a target instance, the
delete is restricted. If the association in the example above was

 Interpreting ProSource Seabed Diagrams

12

Copyright © 2016 Schlumberger. All rights reserved.

Control, the Facility instance would be deleted if any
Facility_Composition instances that reference it were deleted.

Note: There are a few cases where the diagram specifies a delete
semantic that is not actually implemented in the physical database.
These cases only arise in associations referencing abstract classes, and
are described in detail in the next section. To determine the delete
semantic that is actually implemented, refer to the web report.

How is it represented in
the web report?

 The delete semantic can be inferred from the “Implementation
Technique” column for a link in the “Referenced By” or “Refers To”
sections.

For associations whose target is a concrete class, the Implementation
Technique column displays the delete semantic displayed on the
diagram.

For associations whose target is abstract, the Implementation
Technique is determined as follows:

For associations that are implemented using the “Assoc” technique
and that have a one-to-many cardinality (that is, each source instance
can reference one target instance), the implementation technique
displays “Assoc to One.” As stated in Appendix B – Associations
Referencing Abstract Classes, “Assoc to One” implies a Nullify delete
semantic for non-mandatory associations and a Cascade delete
semantic for mandatory associations.

For associations that are implemented using the “Assoc” technique
and that have a many-to-many cardinality (that is, each source
instance can reference many target instances), the implementation
technique displays “Assoc to Many.” As stated in Appendix B –
Associations Referencing Abstract Classes, “Assoc to Many” implies a
Nullify delete semantic.

For associations that are implemented using the “Single Abstract”
technique, the implementation technique displays “Cascade”. As
described in Appendix B – Associations Referencing Abstract Classes,
all associations implemented with the Single Abstract technique
trigger a cascade delete.

How is it represented in a
physical database?

 For associations whose target is a concrete class, the delete semantic
is enforced using a database referential integrity constraint.

For associations whose target is abstract, the delete semantic is
enforced using alternate methods, which are described in Appendix B
– Associations Referencing Abstract Classes.

 Interpreting ProSource Seabed Diagrams

13

Copyright © 2016 Schlumberger. All rights reserved.

1.11 Composition Association

0..*

1..1
Borehole

Borehole Borehole_Alias

What does it tell me?

The association is a whole/part relationship that implies a strong
ownership of the source class (the “part”) by the target class (the
“whole”). Composition implies that the lifetime of the instances of the
source class is limited to the lifetime of the instance of the referenced
target class. By definition, when a target instance is deleted, all the
source instances that reference it must also be deleted.

How is it represented in
the web report?

 The target class has a section called “Composed Of” that lists the
entities that have a composition association. Whether the target class
instance can be associated with “one” or “many” source class
instances is specified in the “Cardinality” column.

In example above, Borehole lists Borehole_Alias in its “Composed Of”
section, with a cardinality of “Many”, since the multiplicity specifies
that an instance of Borehole can be referenced by many instances of
Borehole_Alias.

In the “General Information” section of the source class, “Extension of
{target class}” is specified in the “Entity Type” field. In the example
above, “Extension of Borehole” is specified as the Entity Type for
Borehole_Alias.

Additionally, the target class lists the source class in its “Referenced
By” section, and the source class lists the target class in its “Refers To”
section.

How is it represented in a
physical database?

 Both the target class and the source class are implemented as views
on tables. The association between them is implemented as a foreign
key. If the cardinality of the source class is “One”, its primary key is a
foreign key to the target class’ primary key. If the cardinality is
“Many”, the extension class has a sequence-generated primary key.

 Interpreting ProSource Seabed Diagrams

14

Copyright © 2016 Schlumberger. All rights reserved.

1.12 Generalization

What does it tell me? A generalization is a relationship between a general thing,
called the superclass or parent, and a more specific kind of
that thing, called the subclass or child. A generalization is
sometimes called an “is-a-kind-of” relationship. The example
here shows that an ESP pump is a kind of pump; and that a
pump is a kind of tracked facility. It can also be read, “ESP
Pump is a specialization of Pump, which is a specialization of
Tracked Facility. Pump is a generalization of ESP Pump and
Tracked Facility is a generalization of Pump.”

How is it represented
in the web report?

In an entity’s “General Information” section, there is a row
called “Specializations” that lists each entity that is a
subclass of that entity, and there is a row called
“Generalizations” that lists each entity that is a superclass of
that entity.

Note: If there is more than one entity listed in
Generalizations, it implies an inheritance hierarchy where
the first class in the list is the immediate parent, as opposed
to implying direct inheritance from multiple classes. A class
cannot inherit directly from more than one class. If the
generalization association is between two concrete classes,
the “Entity Type” of the child class is “View”.

How is it represented
in a physical database?

If the superclass is abstract and the subclass is concrete,
the superclass is not visible in the physical database. The
subclass is generated as an updateable view that also
includes the attributes and associations from the superclass.
There may be a table that has the same name as the
subclass, with a “_” appended at the end.

 If both the superclass and the subclass are concrete, the superclass is implemented
as a table with a “_” appended to the end of the name. It includes all the attributes
and associations from all its subclasses, plus an additional column called “Sub_Type”
that stores the class name of the subclass for that instance. A read-only view is
generated on the superclass with only the attributes and associations of the
superclass, plus the Sub_Type column. For each subclass, an updateable view is
generated and named for the subclass, which has the attributes and associations for
that subclass, plus the attributes and associations inherited from the superclass, plus
the Sub_Type column.

 If both the superclass and the subclass are abstract, the concrete classes that inherit
from the abstract class inherit the attributes and associations from the abstract class,
and those attributes/associations become columns in the view created from the
concrete class.

Note: Abstract classes are not implemented as tables in a physical database.

ESP_Pump

Actual_Stage_Count

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Housing_Type

Length

Max_Stage_Count

Min_Stage_Count

Outer_Diameter

Pump_Type

Rated_SHP

Rated_Volume

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Stage_Design

Trim_Type

Weight

Pump

{abstract}

Hydraulic_Power

Mechanical_Power

Rated_Flow_Rate

Rated_Pressure

 Interpreting ProSource Seabed Diagrams

15

Copyright © 2016 Schlumberger. All rights reserved.

Appendix A – Association Implementation Techniques Mentioned in the Web Report

 Cascade: deleting an instance in the target class results in the deletion of all instances in the
source class that reference it.

 Restrict: deleting an instance in the target class results in an error if any source instances
exist that reference the deleted target instance. All source instances must be deleted before
the target can be successfully deleted.

 Nullify: the columns in the source containing the reference to the target instance are set to
null when the target instance is deleted.

 Control: the inverse of Cascade. Control specifies that the referenced instance in the target
class be deleted when an instance in the source class is deleted. This is normally used in
situations where the target class is referenced from many source classes and a given target
instance is referenced from only one instance in one source class. When an attempt is made
to delete a target instance, the delete is restricted.

 Assoc to One: specified when an association is implemented using the “Assoc” technique
(described in Appendix B – Associations Referencing Abstract Classes), and when the
association has a one-to-many cardinality; that is, each source instance can reference one
target instance and a target can be referenced by many sources.

 Assoc to Many: specified when an association is implemented using the “Assoc” technique,
(described in Appendix B – Associations Referencing Abstract Classes), and when the
association has a many-to-many cardinality; that is, each source instance can reference
many target instances and a target can be referenced by many sources.

 Interpreting ProSource Seabed Diagrams

16

Copyright © 2016 Schlumberger. All rights reserved.

Appendix B – Associations Referencing Abstract Classes

Relational databases do not support relationships to abstract classes using declarative foreign
keys. However, the Seabed database architecture provides alternate ways of specifying
relationships to abstract classes. Currently, there are two techniques to accomplish this: “Single
Abstract” and “Assoc.” These techniques are explained in detail below.

To help illustrate these techniques, consider the scenario where a user wants to specify that an
ESP (Electric Submersible Pump) is an assembly made up of an ESP Pump and an ESP Motor.
The Seabed class diagram for this structure, called “Facility Composition”, is shown in Example
B-1. Facility Composition is a generic mechanism for defining whole facilities that are an
assemblance of parts. To specify that an ESP is made up of a pump and a motor, the user would
create two Facility_Composition instances: one would specify the ESP Pump as the Part_Facility
and the ESP assembly as the Whole_Facility, and the other Facility Composition instance would
have ESP Motor as the Part and the same ESP as the Whole Facility.

Specific examples of physical implementation options for these relationships are provided later
in this document. In Example B-1, assume that the ESP instance’s primary key (ID) value is 1, the
ESP_Pump instance’s primary key value is 5, and the ESP_Motor instance’s primary key value is
9. Also, assume that the first Facility_Composition instance’s primary key value is 7 and the
second Facility_Composition instance’s primary key value is 10.

 Interpreting ProSource Seabed Diagrams

17

Copyright © 2016 Schlumberger. All rights reserved.

Example B-1

0..*0..1
Part_Facility

0..*1..1
Whole_Facility

0..*

0..1
Part_Facility_Role

ESP

Initial_Start_Count

ESP_Component

{abstract}

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Length

Rated_SHP

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Trim_Type

Weight
ESP_Pump

Actual_Stage_Count

Assembly_Coating

Configuration_Type

Engineering_Code

Housing_Metallurgy

Housing_Type
Length

Max_Stage_Count

Min_Stage_Count

Outer_Diameter

Pump_Type

Rated_SHP

Rated_Volume

Series_Name

Shaft_Metallurgy

Shaft_Size

Shaft_Type

Stage_Design

Trim_Type

Weight

ESP_Motor

Motor_Type

Lubrication_Description

Outer_Diameter

Pothead_Type

Rated_Current

Rated_Frequency

Rated_HP

Rated_Voltage

Rotor_Count

Stator_Winding_Code

Facility

{abstract}

Existence_Kind

Facility_Equipment_Flag

Facility_Composition

Linear_Sequence

Measure_Point_Offset

Part_Facility_Count

Part_Facility_Spacing

R_Facility_Role

Assembly

{abstract}
Tracked_Facility

{abstract}

Catalog_Number

Inventory_Id

Manufacture_Date

Manufacturer

Material_Type

Model_Name

Serial_Number

Pump

{abstract}

Hydraulic_Power

Mechanical_Power

Rated_Flow_Rate

Rated_Pressure

0..*

 Interpreting ProSource Seabed Diagrams

18

Copyright © 2016 Schlumberger. All rights reserved.

B.1 Single Abstract

“Single Abstract” is one alternative for specifying relationships to abstract classes. It is an
implementation technique that applies only to one-to-many associations where the target is
abstract. In other words, the “single” component of the name refers to the fact that the
cardinality on the target side is ‘1’. The “abstract” component of the name refers to the fact
that the target is an abstract class. In Example B-1 above, the “Whole_Facility” and
“Part_Facility” associations fall into this category.

B.1.1 Physical Implementation

When the Single Abstract implementation technique is specified for an association, the
association is implemented physically as follows:

 The source table is implemented with the following two columns, the combination of which
store the reference to the target:
o {Association Name}_ID: stores the PK value of the target instance.
o {Association Name}_TBL: stores the name of the table in which the target instance

resides.

B.1.1.1 Referential Integrity

When the Single Abstract implementation technique is specified for an association, the
referential integrity is handled as follows:
1. A delete trigger is added to each table that implements a concrete class that inherits from

the target. The trigger deletes the referencing source record instance when the target
record instance is deleted. This essentially implements a cascade delete for every
association implemented with the Single Abstract technique.

2. There is no referential integrity built in for updates to the {Association Name}_ID or
{Association Name}_TBL columns, meaning no data validation is performed. Therefore, the
application or user must ensure that the values are valid.

B.1.1.2 Multiplicity

If the association specifies a mandatory reference to the target, the {Association Name}_ID and
{Association Name}_TBL columns are implemented with NOT NULL constraints.

B.1.1.3 Web Report Representation

When the Single Abstract implementation technique is specified for an association, the
association is represented in the web report as follows:
1. The association is listed in the “Refers To” or “Referenced By” section of the web report.

The implementation technique is “Cascade”. If the reference to the abstract class is
mandatory, a “Yes” is in the “Required” column.

2. Two columns, {Association Name}_ID and {Association Name}_TBL, are listed in the
“Columns” section. The _ID column specifies the abstract class as its domain; and the _TBL
column specifies Meta_Entity as its domain. If the reference to the abstract class is
mandatory, both the _ID and the _TBL columns are specified as “Required.”

 Interpreting ProSource Seabed Diagrams

19

Copyright © 2016 Schlumberger. All rights reserved.

B.1.1.4 Data Example

In Example B-1, if the Whole_Facility and Part_Facility associations were implemented using the
Single Abstract technique, the table representing the Facility_Composition table would be
implemented with the following additional columns:

 Whole_Facility_Id, Whole_Facility_Tbl

 Part_Facility_Id, Part_Facility_Tbl

The records created in Facility_Composition to store the fact that an ESP is made up of an ESP
pump and motor would have the following values:

 Record 1 – for the pump:
– Whole_Facility_Id would store a value of ‘1’ (the identifier of the ESP assembly).
– Whole_Facility_Tbl would store a value of “ESP.”
– Part_Facility_Id would store a value of ‘5’ (the identifier of the ESP_Pump record).
– Part_Facility_Tbl would store a value of “ESP_Pump.”

 Record 2 – for the motor:
– Whole_Facility_Id would store a value of ‘1’ (the identifier of the ESP assembly).
– Whole_Facility_Tbl would store a value of “ESP.”
– Part_Facility_Id would store a value of ‘9’ (the identifier of the ESP_Motor record).
– Part_Facility_Tbl would store a value of “ESP_Motor.”

B.1.2 Assoc

The other method to specify associations to abstract classes is called “Assoc.” This is the only
method to use when the association is many-to-many, but can also be used for one-to-many
associations.

B.1.1.5 Physical Implementation

When the Assoc implementation technique is specified for an association, the association is
physically implemented as follows:

1. The table generated from the source class has no columns that reference the target.
Instead, information about association instances is stored in a special table called Assoc.
The Assoc table is made up of the following columns:

 Entity_Type - The name of the entity on the “source” (referencing) side of the
association. This is analogous to the name of the table holding the FK column in a
relational database.

Note: The entity name is not validated against the list of entity names in the
database.

 Entity_Id - The identifier of the record on the “source” side of the association. It is the
identifier of the record that is referencing the other (as opposed to being referenced by
the other). This is analogous to the value of the PK of the record holding the FK value in
a relational database.

Note: The id is not validated against the list of valid IDs in the source.

 Property_Type - The name of the entity on the “target” (referenced) side of the

 Interpreting ProSource Seabed Diagrams

20

Copyright © 2016 Schlumberger. All rights reserved.

association. This is analogous to the name of the table the FK column is referencing in a
relational database.

Note: The entity name is not validated against the list of entity names in the
database.

 Property_Code - The name of the role played by the “target” (referenced) record. This is
analogous to the name of the FK column in a relational database. In QDesigner’s
implementation of UML, this is the Role B Name.

 Property_Id - The identifier of the record on the “target” side of the association. It is the
identifier of the record that is being referenced by the other. This is analogous to
the value in the FK column in a relational database.

Note: The id is not validated against the list of valid IDs in the target.

 Rank - The order of the referenced entity instances when there are “many” instances on
the target (referenced) side of the association.

2. If the class on the source side of the association has no subtypes, an updateable view called
{Source Class Name}_Ref is created. This view sits on top of the Assoc table and has the
same columns as Assoc, with the exception of Entity_Type, whose value can be inferred
from the view name. If the source class has subtypes, the view’s name is based on the name
of the concrete class that inherits from the source class.

B.1.1.6 Referential Integrity

When the Assoc implementation technique is specified for an association, the referential
integrity is handled as follows:
1. A delete trigger is added to each table that implements a concrete class that inherits from

the target. The trigger’s behavior is dependent on the multiplicity of the association:

 If the reference to the target class is optional:
When a record in the target is deleted, the trigger deletes all records in Assoc that
reference that target instance. This essentially implements a nullify delete constraint for
the association.

 If the reference to the target class is mandatory:
When a record in the target is deleted, the delete trigger deletes all records in Assoc
that reference that target instance and the record that is referencing the target. This
means that the record whose identifier is stored in the Entity_Id column in the record is
deleted from Assoc. This essentially implements a cascade delete constraint for the
association.
In Example B-1, if the ESP #1 record were deleted, every row in Assoc that has
Property_Id = 1 and Property_Type = ‘ESP’ would be deleted. In addition, the
Facility_Composition #7 record would be deleted.

2. There is no built-in referential integrity for updates to any column in the ASSOC table;
therefore, no data validation is performed. The application or user must ensure that the
values are valid.

 Interpreting ProSource Seabed Diagrams

21

Copyright © 2016 Schlumberger. All rights reserved.

B.1.1.7 Multiplicity

It is currently not possible to enforce an insert into the Assoc table for associations that are
implemented with the Assoc technique and are specified as mandatory. Users or applications
must ensure that the proper records are inserted into the Assoc table.

B.1.1.8 Web Report Representation

When the Assoc implementation technique is specified for an association, the association is
represented in the web report as follows:

 The association is listed in the “Refers To” or “Referenced By” section of the web report.
The implementation technique is “Assoc to One” if only one instance of the target class can
be referenced (the multiplicity on the target side is 1..1 or 0..1). The implementation
technique is “Assoc to Many” if many instances of the target class can be referenced (the
multiplicity on the target side is 1..* or 0..*). If the reference to the target class is
mandatory, there is a “Yes” in the “Required” column, which implies a Cascade delete
behavior across the association. If the reference to the target class is not mandatory, there
is a “No” in the “Required” column, which implies a Nullify delete behavior across the
association.

B.1.1.9 Data Example

In Example B-1, if the Whole_Facility and Part_Facility associations were implemented using the
Assoc technique, an updateable view would be created on top of the Assoc table called
Facility_Composition_Ref. To store the fact that an ESP is made up of an ESP pump and motor,
a user would insert four records into this view as follows:

 Records for ESP Pump and ESP:
– Entity_Id – This column would contain the value “7” for both the record storing the

“Whole_Facility” association and the record storing the “Part_Facility” association. This
value is the identifier of the Facility_Composition record that is recording the fact that
the ESP is made up of the ESP pump.

– Property_Type – This column would contain the value “ESP” for the record storing the
“Whole_Facility” association and the value “ESP_Pump” for the record storing the
“Part_Facility” association.

– Property_Code – This column would contain the value “Whole_Facility” for the record
storing the “Whole_Facility” association and the value “Part_Facility” for the record
storing the “Part_Facility” association.

– Property_Id – This column would contain the value “1” (the identifier of the ESP record)
for the record storing the “Whole_Facility” association and the value “5” (the identifier
of the ESP_Pump record) for the record storing the “Part_Facility” association.

– Rank – This column would contain the value “0” for both the record storing the
“Whole_Facility” association and for the record storing the “Part_Facility” association
because this is a one-to-many relationship.

 Interpreting ProSource Seabed Diagrams

22

Copyright © 2016 Schlumberger. All rights reserved.

 Records for ESP Motor and ESP:
– Entity_Id – This column would contain the value “10” for both the record storing the

“Whole_Facility” association and for the record storing the “Part_Facility” association.
This value is the identifier of the Facility_Composition record that is recording the fact
that the ESP is made up of the ESP motor.

– Property_Type – This column would contain the value “ESP” for the record storing the
“Whole_Facility” association and the value “ESP_Motor” for the record storing the
“Part_Facility” association.

– Property_Code – This column would contain the value “Whole_Facility” for the record
storing the “Whole_Facility” association and the value “Part_Facility” for the record
storing the “Part_Facility” association.

– Property_Id – This column would contain the value “1” (the identifier of the ESP record)
for the record storing the “Whole_Facility” association and the value “9” (the identifier
of the ESP_Motor record) for the record storing the “Part_Facility” association.

– Rank – This column would contain the value “0” for both the record storing the
“Whole_Facility” association and the record storing the “Part_Facility” association
because this is a one-to-many relationship.

This view would in turn populate the underlying Assoc table with four records whose
Entity_Type column is “Facility_Composition.”

